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Great is the LORD and most worthy of praise;  
   his greatness no one can fathom.  
One generation commends your works to another;  
   they tell of your mighty acts.  
They speak of the glorious splendor of your majesty—  
   and I will meditate on your wonderful works.
Psalm 145:3-5

Other Worlds 
In high school, I was a voracious reader, particularly of science fiction and 
fantasy novels. It was a form of escapism for me. To imagine myself as a 
knight in medieval times or a space explorer on an unknown planet was my 
favorite way of passing the time—so much so that if my studies failed to 
feed my imagination in the same way, they often took second stage. 
 During my sophomore year, I encountered a genre of science fiction, 
written in particular by H.P. Lovecraft, that portrayed our everyday 
experiences as a mere façade. Behind the façade lay deep, ancient mysteries 
and forces, often nihilistic, that might someday make their appearance 
to the detriment of humankind. This type of literature fascinated for me 
for two reasons. First, much of the writing occurred during an era when 
research in physics was providing startling new insights into the nature of 
our physical world. Einstein’s theories of special and general relativity were 
beginning to give us a picture of large-scale space and time as curved rather 
than flat, as previously thought. Quantum mechanics was illuminating 
the very small as exhibiting weird physical properties in which particles 
exist as energy packets, called quanta, which “move” in a discrete fashion. 
This view blurred our ability to make observable predictions of both their 
position and velocity. Ideas like higher dimensions and non-Euclidean 
geometries provided fertile ground for imaginative stories. Often these 
stories contained descriptions of strange alien races who achieved 
bewildering advances in science and technology which we would begin 
to understand only when our mathematics and science one day reached a 
suitable maturity, perhaps millennia from now. 

 The second reason these writings fascinated me was that they often 
found a way to convey a deep sense of wonder and mystery toward the 
unknown of our world, while portraying science and mathematics as a way 
of pulling back the veils that hide these mysteries. While I was reading 
these stories, my geometry class started to hold more of my attention as I 
looked for evidence of deeper mysteries in the geometric constructions and 
deductions discussed in class. During my senior year, as I was considering 
which colleges and universities to apply to, I looked for opportunities to 
explore topics like curved space and non-Euclidean geometry in ways 
that hinted at the possibility of wonder these stories promised. I made it 
my mission to focus my studies on mathematics and seek out the deeper 
mysteries that might be hidden with our reality.
 When I entered college and embraced Christianity, suddenly 
mathematics and wonder took on completely new meanings.

From Wonder to Beauty
Where there exists wondrous proportion and primal equality…

Saint Augustine, On the Trinity, vi. 10

As is often the case, a college or university can be a transformative place for 
young minds. For me, it was the place where my academic studies fed my 
imagination rather than being a distraction from the fantasies I sought to 
indulge. In my study of mathematics, I found hints of the wondrous worlds 
that the stories I read in high school had suggested, a sense of something 
that transcended our everyday experience. 
 In my first year, I encountered something else that also pointed to 
transcendence beyond our world. I made friends whose lives demonstrated 
connection with a divine Creator who sought a deep relationship with 
men and women and initiated that relationship through a historical act of 
incarnation. The faith that they shared with me opened my eyes to a true 
source of transcendence: a God who divinely created our reality and fills 
it with wonder and beauty, a God who provided the true way to knowing 
him through the salvific work of his Son, as incarnated in Jesus Christ. 



160 delight in creation 161 mathematics and beauty   turner

Suddenly, I understood our reality and the potential realities mathematics 
spoke of as being illuminated by the same light, the light of Christ.
 Now, what can be said of these wonders in mathematics that 
mesmerized me? Are they the same things that attract other people to 
the study of mathematics? At the root of every subject in mathematics 
are both a sense of quantity and a sense of relations: geometry explores 
spatial relations, number theory explores natural number relations, 
analysis studies relations within continuous quantities, and so on. Within 
each one of these subjects, mathematicians can unlock the mysteries of 
deep and elegant patterns. From these patterns, mathematicians develop 
sophisticated theories that expand the context in which these patterns can 
be found. These theories in turn provide a broader range of possibilities for 
applications within mathematics and, possibly, within other sciences. It is 
this process of pattern exploration, theory building, and application which 
drives the development of the various subjects in mathematics. Within 
that process, mathematicians find points that can instill inspiration and 
wonder. Such points have certain features in common which individually 
or collectively can be said to portray a sense of beauty. Here are some of 
those features:

•	 Unexpected connections: In a study of one or more 
mathematical subjects, two or more seemingly disparate objects 
or relations may suddenly be seen as shades of a single web 
of relations, providing a sense of unity within or across such 
subjects.

•	 Simplicity: A mathematical theory aims to explain the 
logic underlying discovered patterns using basic definitions, 
intuitive truths, and suitably basic constructions. Within such a 
framework, deep and unexpected connections are most intensely 
revealed when relations can be explained with the greatest 
simplicity, enabling ease both in discerning their hidden truths 
and in articulating and communicating such patterns to others.

•	 Openness to new possibilities and deeper connections: 
Dwelling upon singular patterns and merely giving them a 

simple explanation is often insufficient and can lead dead ends. 
What can instill a deeper sense of inspiration to mathematicians 
is to develop a framework within the theory that not only 
explains those relations and patterns investigated, but allows for 
previously unseen connections to unfold.

Let us now move beyond these broad stroke descriptions of what 
mathematicians find beautiful to look at some concrete examples that 
demonstrate some of the features associated with beauty in mathematics.

Beauty, Proof and Symmetry
…those things are said to be beautiful which please when seen.

Saint Thomas Aquinas, Summa Theologiae I-II, q. 27, a. 1, ad. 3

Reflect for a moment on a time when you experienced a sense of wonder 
or beauty. I would suspect that accompanying that experience was a strong, 
positive emotion drawing you to attend closer to the object of wonder, 
to repeat the experience, or perhaps to see if further treasures lay beyond 
the immediate object. This experience of beauty is what is at play in the 
mathematician’s encounter with mathematics, one which conveys a sense 
of unveiling the mysteries within the forms and patterns being discerned 
and deciphered. The type of beauty that is found within a mathematician’s 
world creates a magnetic attraction that pulls upon the mathematician’s 
attention, focusing his or her full being and bringing pleasure in all of the 
ways the object of beauty is viewed, grasped, and sensed. 
 As a concrete case study in mathematical beauty, we will concentrate 
on a subject that often provides the easiest gateway to mathematics through 
the senses, namely geometry. This ancient form of rigorous mathematics 
helps us encounter beauty in two particular ways, through rigorous proof 
and symmetry. We will spend more time with the latter, but I should note 
that rigorous proof is an important source of aesthetic encounters for the 
mathematician. For example, consider the following observation from 
Sir Bertrand Russell in his autobiography: “At the age of eleven, I began 
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Euclid, with my brother as my tutor. This was one of the great events of my 
life, as dazzling as first love. I had not imagined that there was anything 
so delicious in the world.” Even more poetic and succinct are the words of 
Edna St. Vincent Millay: “Euclid alone has looked on Beauty bare.”
 What is it in the structure of Euclid’s Elements that evokes such 
responses of wonder in those who take it upon themselves to study this 
work? Euclid, in putting together the Elements, produced a paradigm for 
organizing a body of knowledge. Beginning with basic key geometric 
definitions and self-evident postulates which govern the way these 
geometric notions relate, the theory of plane geometry is developed 
from the basic to the more sophisticated through further definitions and 
constructions, with deeper relations disclosed in propositions. These in 
turn are established through rigorous proofs that unveil how preexisting 
relations can be woven together through logic in order to arrive at the 
desired result. Euclid’s approach to conveying mathematical knowledge 
in his Elements has been considered the ideal approach to organizing any 
subject of mathematics and persists today. It thus provides the means to 
find beauty in all parts of mathematics in ways that resonate with Russell, 
St. Vincent Millay, and many others. 
 Now, let’s consider an approach to geometry in which the notion of 
beauty presents itself in a more common sense fashion, namely through the 
notion of symmetry. The idea behind symmetry is rather simple. Consider 
the following square:

Symmetries of this square can be imagined in two different ways. First, 
imagine rotating the square counterclockwise through a fixed angle. A 
rotation is a symmetry if the square looks the same after rotation, such 
that the vertices and edges have moved to the positions of other vertices 
and edges. If you can imagine this, you should conclude that the rotations 
through 0, 90, 180, and 270 degrees give all the useful rotational symmetries. 
Below is a square with some of these rotations rendered:

p
L1

L4 L2L3

The second type of symmetry is a reflection, as illustrated in this same 
diagram. Fixing your attention upon any one of the four lines L1, L2, 
L3, and L4 crossing through the center point of the square, imagine 
spinning the square in space around that fixed line until it lies back in 
the plane. This gives a reflective symmetry. It is a geometric result that 
all planar symmetries of the square that fix the center point are either 
one of the four rotations or one of the four reflections, totaling eight 
possible planar symmetries. Furthermore, a given symmetry can be related 
to another symmetry through some third symmetry by a method of 
composition in which performing one symmetry then applying a second 
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symmetry will result in a third symmetry. For example, rotating the square 
counterclockwise 90 degrees then reflecting through a horizontal line 
L1 gives a symmetry that is identical to reflecting the square around the 
diagonal axis L2. Collectively these symmetries, together with this method 
of composition, form an example of a structure called a group.
 Now an analysis of symmetries can be carried out for any geometric 
shape, not just the square. For example, any polygon in the plane, like the 
regular pentagon and hexagon below, has symmetries:

The regular pentagon has five rotations and five reflections in its group of 
symmetries, the regular hexagon has six rotations and six reflections in its 
group of symmetries, and so on. 
 If we consider now geometric objects in three spatial dimensions, the 
analog of regular polygons are the regular polyhedra, also known as the 
Platonic solids. In contrast to regular polygons, in which their number is 
infinite, there are exactly five Platonic solids, as shown on the next page. 
Each of these solids carries a group of spatial symmetries as well. Recall 
that for planar objects, the rotations and reflections were about lines, but 
for these solid objects the rotations and reflections are through planes. 
As a source of inspired beauty, many mathematicians, philosophers, and 
scientists, such as Euclid, Plato, and Kepler, have found such deep aesthetic 
pleasure in the Platonic solids that they’ve sought to make them building 
blocks of the universe. For example, Euclid’s Elements concludes with 
characterizations and a complete classification of the Platonic solids and 
Kepler, in his Mysterium Cosmographicum, gave a model rendering the solar 

Platonic solids.
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system using nested Platonic solids (below). It wasn’t until the nineteenth 
century that mathematicians fully developed the theory of symmetries and 
their groups.
 At the start of the twentieth century, the revolutions in physics—
special and general relativity theory and quantum physics—found in the 
mathematical theory of symmetry the means to model the quantitative 
properties and relations in the newly understood nature of space and time 
of the very large or the very small. For example, in Einstein’s theory of 
relativity, his principle of invariance asserts that the same experiment 
conducted at two different points in space and time will have essentially 
the same outcome once the appropriate space-time symmetry is taken into 
account. In quantum physics, the most fundamental of particles possess 
internal symmetries that individually characterize them as the particles 
they are. Furthermore, the way these particles interact with each other 
possess a wealth of symmetries that both characterize the relationships 
between them and provide the means to locate them experimentally in, for 
example, particle accelerators. In the current regime of theoretical physics 
research and exploration, the search for a Grand Unified Theory—a model 

of fundamental particles that accounts for all the forces of nature—has led 
physicists to extend the theory of symmetries of space-time in order to 
expand our current accounts of particle physics to also include gravity and 
relativity theory. For example, superstring theory incorporates a ginned-up 
version of symmetry known as supersymmetry. Thus, symmetry illustrates 
all three types of beauty mentioned earlier: unexpected relationships of 
symmetries into groups, simplicity of the visible geometry of the symmetric 
relationships, and new possibilities when applied to the physical world.

Exploring the Beyond: Higher Dimensions
Another major advance in mathematics in the nineteenth century that 
also played a pivotal role in the advances of twentieth century physics was 
the development of geometry in higher dimensions. Ever since Descartes 
created analytic geometry in the seventeenth century, Euclid’s geometry 
in the Elements could be synthesized with algebra in such a way that 
mathematicians found rather quickly geometric objects that required 
more than three spatial dimensions to describe. Moreover, the calculus as 
created by Newton and Leibniz could be generalized and applied to such 
geometric objects to enable a deeper understanding of their nature. All 
of this culminated in the nineteenth century with the work of Bernhard 
Riemann who developed a general theory of geometry that unified the 
algebraic and analytic features explored since the seventeenth century. 
This view of geometry required mathematicians to unshackle their senses 
in order to comprehend those features of geometric objects that resided 
in four, or five, or even higher dimensions. Breaking free of our senses 
in order to comprehend a reality that completely transcends our three-
dimensional world requires thinking by analogy to translate our experiences 
to those of a creature who inhabits such a world of higher dimensions. 
This development inspired Edwin Abbot Abbot to pen the book Flatland 
in 1884, which describes two-dimensional creatures who live in a planar 
world and tells the tale of one such creature (a square) who is paid a visit by 
a three-dimensional creature (a sphere). What unfolds is the attempts of 
the sphere to explain his nature to square, who can only experience a world 
of two dimensions. One of Abbot’s aims in this novel is to give the reader 

Kepler’s Mysterium Cosmographicum.
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a window into the then recent exploration by mathematicians into the 
nature of higher dimensions, which illustrates the idea of transcendence in 
both its scientific and religious sense. 
 To see how analogy can give insight into higher dimensions, consider 
the following sequence of geometric figures: 

on how lower dimensional cubes are formed. Properties of the hypercube 
are then extracted through this analogy. 
 Using analogy to visualize and analyze higher dimensional objects is 
one of the main ways mathematicians can translate such objects to our 
realm of experience for study. This process is necessary as visualizing 
higher dimensional objects in their actual form is extremely difficult. By 
imagining how such objects can be constructed from lower dimensional 
objects, as described above, we may surmise the properties of objects in 
dimensions four, five, and higher in an inductive way by developing objects 
from dimensions one, two, and three. This is the method of analogy that 
is so beautifully described by Abbott in Flatland, particularly in Square’s 
encounter with the three-dimensional Sphere. As Sphere entered into 
Flatland, Square perceived a dot which became a circle whose radius grew 
until it reached Sphere’s radial length, and then shrunk back down until 
the circle reached a point and then disappeared, as illustrated below. By 
analogy, one way to imagine a hypersphere in four dimensions is by its 
appearance as it passes through our physical three-dimensional space. 

The progression from left to right portrays the notion of cube in the 
appropriate dimension: 

•	 A point is a zero-dimensional cube. 
•	 A line segment is a one-dimensional cube formed by dragging 

the point one unit to the right along a one-dimensional axial 
direction. 

•	 A square is a two-dimensional cube formed by dragging the line 
segment one unit along a second direction perpendicular to the 
first axial direction.

•	 A cube is a three-dimensional cube formed by dragging 
the square segment one unit along a third axial direction 
perpendicular to both the first and second axial directions.

•	 A hypercube (or tesseract), then, is a four-dimensional cube 
formed by dragging the cube segment one unit along a 
hypothetical fourth axial direction perpendicular to each of the 
first, second, and third axial directions.

Since we cannot experience such a fourth axial direction, we are left with 
only a conceptual description about how we may form a hypercube based 
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Initially we would see a point and then, like a balloon, we see a small 
sphere that inflates until it expands to a sphere of radial length equal to 
that of the hypersphere and then deflates back down to a point.
 Another way to visualize the hypercube through analogy is to consider 
the cube through the following sequence of perspectives:

Four dimensional analogs of Platonic solids.

Here the cube is to be viewed by focusing on the red back face as the 
viewer comes from the side of the cube, moving until facing the back face 
directly through the front face. This last perspective of the cube (on the 
right) can also be viewed in a two-dimensional fashion, as an outer square 
and an inner square with nearby corners connected by line segments. This 
way of viewing a cube two-dimensionally is often called a projection or 
shadow of the cube. By analogy, we may consider a similar perspective of 
a hypercube: our three-dimensional view of the cube that focuses on the 
back face through the front face translates to a four-dimensional view of 
the hypercube that focuses on the “back cube” through the “front cube.” 
The resulting projection from four-space to three-space translates “inside/
outside square” for the two-dimensional projection of a three-dimensional 
cube to “inside/outside cube” for the three-dimensional projection of a 
four-dimensional cube and appears as follows:
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In a similar way, the other Platonic solids possess four-dimensional analogs 
(see below). Notice the remarkable symmetry and intricacy in the hyper-
dodecahedron and the hyper-icosahedron. The simple visual symmetry of 
these images is a great example of beauty in mathematics.  
 Now, higher dimensional geometry, as noted before, has found its way 
into scientists’ efforts to understand the universe in the twentieth century 
through the developments of general relativity theory and quantum physics. 
One recent way such higher dimensions have entered physical theories is 
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in cosmology and the effort to describe the large-scale structure of the 
universe. To get a feel for how these higher dimensions are contemplated, 
here is another exercise in analogy. Consider the disk:

Now consider a square with the sides oriented as follows:

This is a two-dimensional object. If we consider this disk as viewed edge-
on in space and push the center downward, we get a bowl:

Stretching the rim of the bowl to touch a point above the bowl forms a 
sphere:

Connecting the opposing sides results in a cylinder:

Gluing the top and bottom together gives an inner tube shape: 

The resulting shape is called a torus:
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Thus, by simply gluing the edges of a square together, we can get a shape 
that looks completely different. Notice that from the perspective of the 
square, traveling to one edge transports the traveler back to the opposite 
edge, which accounts for the two perpendicular circular directions on the 
torus. Imagine living as an ant on the square: every time you departed the 
left edge you’d appear on the right edge. The same thing happens seamlessly 
on the torus.
 Consider next a similar square in which only the left and right sides 
have arrows oppositely directed. The process of identifying those sides can 
be seen as follows:

Finally, consider the square with edges oriented as follows:

The resulting glued object is called a Möbius band. Such an object possesses 
the feature of being “unoriented” in that, in contrast with a cylinder, it fails 
to have a distinct inside and outside, so it is considered one-sided. This can 
be seen in this rendering of a Möbius band:

Gluing opposite edges in the way that aligns the arrows yields an unoriented 
surface known as the Klein bottle:

The unorientabilty of this surface prevents it from having both an inside 
and an outside: an ant can crawl from the inside to the outside without 
reaching an edge. The picture is deceptive. To view it in three dimensions, 
as above, requires the neck of the bottle to pierce the body. Four spatial 
dimensions are required to give a proper depiction. This is the sort of 
hidden reality that excited me as a student; simply matching up edges on a 
square can yield a bizarre shape that can’t be portrayed in three dimensions.
 We can make note of three features of the surfaces the sphere, the 
torus, and the Klein bottle. They are:

•	 Locally two-dimensional: Because we formed them by gluing 
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the edges of a flat square, the surface looks flat and two-
dimensional when focusing on any point up close.

•	 Closed: While the square has an edge or boundary, after gluing 
the edges the boundary disappears making it edgeless or closed.

•	 Embedded in higher dimensions: Even though these surfaces 
are two-dimensional up close, being closed forces them to have 
three or even four spatial dimensions.

A similar view can be given to the description of our universe. Cosmologists 
develop models of the cosmos based upon general relativity and supported 
by astronomical observations. Among them there are some models that are 
geometrically closed. We know from our own experience that the world is 
locally three-dimensional. What are the possible geometric descriptions of 
such a closed three-dimensional structure? By analogy, instead of starting 
with a square and selecting rules for gluing the outer edge, start with a 
cube:

observations, Jeff Weeks has proposed in The Shape of Space that gluing 
opposing faces of dodecahedron gives a good closed model of our universe:

Imagining the interior to be our universe, we may consider opposite faces 
glued according to variations on the gluing rules we contemplated for the 
square. Performing this gluing for all three pairs of opposing faces gives 
a closed, locally three-dimensional object which, because of gluing all 
opposing faces, requires embedding in more than three spatial dimensions 
to properly exist. Note, as with the torus, that viewing beyond a face brings 
one’s visual field back into the cube through the opposite side, right behind 
the viewer (you could see the back of your own head). 
 It should be noted, that other polyhedra can be considered when 
forming models of the universe. For example, based on astronomical 

This geometric object is called a Siefert-Weber manifold. 
 For a mathematician, the exploration of higher dimensions need not 
end at four dimensions. For example, in our discussion of Platonic solids, 
we identified the only five that exist in three-dimensional space. In four-
dimensional space, we indicated there is a hyper version of each of the five 
of the Platonic solids. Are there others? The definition of hyper-Platonic 
solids does not necessarily exclude other possibilities and, in fact, there 
is one more, called the 24-cell, whose projection into three-dimensional 
space is displayed here: 
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The definition of Platonic solids and hyper-Platonic solids can be 
generalized to five, six, seven, and beyond to the notion of regular polytope. 
Can a similar classification be given to such objects in such higher 
dimensions, or do things become overly complex? Well, the notions of 
hyper-tetrahedron, hyper-cube, and hyper-octahedron persist easily to 
every dimension. The amazing thing is that in each dimension of five or higher, 
the only regular polytopes are the appropriate analogs of the hyper-tetrahedron, 
hyper-cube, and hyper-octahedron. Here we have a wondrous example of the 
treasures that can be found within the mathematician’s imagination. In 
the expectation that higher dimensions imply higher complexity, which 
in general is true, the high order symmetry of regular polytopes restricts 
its possibilities to just the most basic types. Unfortunately, or fortunately, 
geometric objects in higher dimensions generally can take on a variety 
of complex and exotic features for which any specific assertions that 
can be declared by a mathematician regarding them often require a list 
presuppositions in order to get a firm grasp upon their nature. However, in 
the case of Platonic solids, the use of analogy and symmetry as a means of 
discerning these geometric objects leads not only to the types of simplicity 
and unexpected connections that give a breathtaking beauty to our 
understanding of higher dimensions; it also provides a way of initiating 
the search for deeper connections as it relates to more general geometric 
objects in any dimensions by first considering them as a suitably general 
form of polytope.

The Splendor of Creation:  
Beauty and the Glory of God
By taking geometric objects and their symmetries as the source of 
examples of beauty in mathematics, my aim is to offer a sense of how 
mathematics instills a sense of awe in mathematicians and scientists as 
they explore the deep inner workings of physical space. Moreover, one can 
glean from such explorations a sense that physical space is not required 
to be the way it is. From the viewpoint of mathematics, there is a wealth 
of possibility for how space can be woven together to give a geometry 

for the fabric of the cosmos. From such a vantage point, one can easily 
see the universe as a creation—a creation intended to produce wonder in 
participants with whom the Creator desires a relationship. Some of these 
participants may be enraptured by the equations they are contemplating, 
which disclose in geometric designs the impress of a divine author at the 
root of our entire existence. Herein is beauty found: to see the presence 
of the Creator revealed in the designs and relations eloquently articulated 
through the equations of the physicist or mathematician. Furthermore, 
in the expressions of the mathematician’s world, the colors of creation’s 
possibilities can be discerned to be among those on the Creator’s palette, 
perhaps as seen before the brush has even touched the canvas. 
 Among the ways that beauty finds its presence within a mathematical 
discourse are the unexpected connections revealed within the physical 
makeup of reality, the pleasing encounter with and fruitful productivity 
from symmetric relations, and the contemplation of transcendent realities 
within higher dimensions surmised through the power of analogy. Each of 
these can elicit awe from the mathematician, the scientist, the pastor, and 
the parishioner alike as they examine the nature of space in its geometric 
forms. That we may contemplate the ways reality both is and could be is 
a source of great mystery. If one is willing to step back to take it all in, 
it can inspire a sense of awe and a consideration of the possibility of a 
divine author to all that there is—perhaps leading the one contemplating 
to respond in the most profound fashion: Glory!
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